DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement discovering to boost thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support learning (RL) action, which was used to improve the design's reactions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately enhancing both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's geared up to break down complicated questions and reason through them in a detailed manner. This guided reasoning process allows the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation design that can be integrated into different workflows such as representatives, sensible thinking and information interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion specifications, making it possible for effective inference by routing queries to the most pertinent specialist "clusters." This method permits the design to focus on various problem domains while maintaining overall efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and assess models against essential safety criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation increase, develop a limit increase request and connect to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up permissions to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, avoid harmful material, and evaluate designs against essential safety requirements. You can implement safety steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and hb9lc.org whether it occurred at the input or output phase. The examples showcased in the following sections show inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.
The model detail page supplies essential details about the design's abilities, pricing structure, and execution guidelines. You can discover detailed use guidelines, consisting of sample API calls and code bits for integration. The model supports various text generation jobs, consisting of material creation, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking abilities.
The page also includes deployment choices and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be triggered to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, enter a number of instances (between 1-100).
6. For example type, select your instance type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up advanced security and facilities settings, including virtual private cloud (VPC) networking, service role consents, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production releases, you might wish to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the release is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can try out different prompts and change design parameters like temperature and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, material for reasoning.
This is an outstanding way to check out the model's thinking and text generation abilities before integrating it into your applications. The play ground supplies instant feedback, helping you comprehend how the model reacts to numerous inputs and letting you tweak your prompts for optimum results.
You can rapidly check the design in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends out a request to create text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers two convenient methods: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to help you select the technique that finest fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design browser displays available models, with details like the provider name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals key details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if suitable), showing that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the model
5. Choose the design card to see the design details page.
The design details page includes the following details:
- The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you deploy the design, it's recommended to examine the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the automatically produced name or create a custom one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the number of instances (default: 1). Selecting suitable circumstances types and counts is vital for cost and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the model.
The deployment procedure can take several minutes to complete.
When deployment is total, your endpoint status will alter to InService. At this moment, the design is prepared to accept reasoning demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To avoid undesirable charges, finish the actions in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments. - In the Managed releases section, locate the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and .
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious options using AWS services and accelerated calculate. Currently, he is focused on developing strategies for fine-tuning and optimizing the inference efficiency of large language models. In his leisure time, Vivek enjoys treking, watching movies, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that help consumers accelerate their AI journey and unlock organization value.